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SUMMARY

In this work we examine the acceleration of the convergence of a non-overlapping additive Schwarz-type
algorithm by modifying the transmission conditions applied to the subdomain interfaces. We have built
generalized zero-order interface conditions using the Smith theory of diagonalizing polynomial matrices.
The numerical experiments con�rmed qualitatively the behaviour in accordance with the theory, but we
could not reproduce identically the results obtained in the continuous case. The preliminary results are
very encouraging since they lead to a very good convergence rate for certain Mach numbers. Copyright
? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We report on our recent e�orts concerning the construction of non-overlapping additive
Schwarz type algorithms for the solution of the system of Euler equations for compressible
�ows. We are speci�cally concerned with the construction of appropriate interface condi-
tions that improve the convergence rate of the Schwarz algorithm. In Quarteroni and Stolcis
[1], these transmission conditions are Dirichlet conditions for the characteristic variables corre-
sponding to incoming waves. Such conditions can be quali�ed as classical interface conditions
by opposition to more sophisticated formulations such as the optimized interface conditions
studied in Reference [2] for an advection–di�usion equation. Here, we are interested in ex-
tending the principle of optimized interface conditions to the solution of the Euler equations.
For this purpose, general type interface operators are introduced in the formulation of the ad-
ditive Schwarz type algorithm. A convergence analysis is performed in the continuous case by
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considering the linearized Euler equations. An interface iteration is deduced from the formula-
tion of the Schwarz algorithm in the Fourier space. In References [2–5], such a convergence
analysis has been performed by applying a classical diagonalization method to the operator
matrix involved in the problem. In this study, we apply the Smith factorization theory [5] in
order to deduce a general form of the interface conditions. Then, the goal is to optimize the
convergence rate with respect to certain parameters entering in the de�nition of these interface
conditions. The analysis is limited to a two-subdomain decomposition in vertical strips.

2. DOMAIN DECOMPOSITION FOR THE EULER EQUATIONS

2.1. Mathematical model

The goal of the present study is to solve the time-dependent compressible Euler equations
that can be written in conservative form as

@W
@t
+∇:F(W ) = 0

W = (�; �U; E)T; ∇ =
(
@
@x
;
@
@y

)T (1)

where W =W (x; t) is the vector of conservative variables; x and t, respectively, denote the
spatial and temporal variables while F(W )= (Fx(W ); Fy(W ))T is the conservative �ux whose
components are given by

Fx(W ) = (�u; �u2 + p; �uv; u(E + p))T

Fy(W ) = (�v; �uv; �v2 + p; v(E + p))T

In the above expressions, � is the density, V=(u; v)T is the velocity vector, E is the total
energy per unit of volume and p is the pressure. The pressure is deduced from the other
variables using the state equation for a perfect gas p=(�− 1)(E − 1

2�‖V‖2), where � is the
ratio of speci�c heats (�=1:4 for the air). Under the hypothesis that the solution is regular
one can also write a non-conservative (or quasi-linear) equivalent form of Equation (1):

@W
@t
+ Ax(W )

@W
@x

+ Ay(W )
@W
@y

=0 (2)

where Ax(W ) and Aw(W ) are the Jacobian matrices of the �ux vectors Fx(W ) and Fy(W ) (see
Dolean [6] for more details). Suppose that we �rst proceed to an integration in time of (1)
using a backward Euler implicit scheme involving a linearization of the �ux functions. This
operation results in the linearized system

L(U )≡ 1
�t
U + Ax

@U
@x
+ Ay

@U
@y
=f (3)

where U ≡Wn+1 −Wn where Wn+1 =W (x; (n+ 1)�t), and Ax (respectively, Ay) is a short-
hand for Ax(Wn) (respectively, Ay(Wn)) and f is the right-hand side derived out of this
linearization.
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In the following we are interested in solving problem (3), associated to a suitable set
of boundary conditions derived by a mathematical tool based on the Smith factorization
[5] of the polynomial matrices, by a non-overlapping additive Schwarz type algorithm. An
algorithm based on classical transmission conditions at subdomain interfaces that consist
in Dirichlet conditions for the characteristic variables corresponding to incoming waves (a
formulation already considered by Quarteroni and Stolcis [1]) has been studied in Dolean
and Lanteri [7]. The main originality of this preliminary study is the analytical evaluation
of the convergence rate of the Schwarz algorithm and the formulation in the discrete case
of an interface system in terms of �ux variables (the interface conditions being expressed in
terms of upwind conservative normal �uxes computed using the approximate Riemann solver
of Roe [8]). Time integration of the resulting semi-discrete equations is obtained using a
linearized backward Euler implicit scheme. As a result, each pseudo-time step requires the
solution of a sparse linear system for the �ow variables, which is the discrete counterpart
of (3).

2.2. Formulation of a Schwarz algorithm

For the simplicity of the formulation we consider a decomposition of the domain [0; L]×R
into vertical strips ([li; Li]×R)i6i6N with or without overlaps. The linearized system (3)
is solved by a Schwarz type algorithm. Let W 0

i be the initial approximation of the solu-
tion in subdomain �i. A general formulation of the additive Schwarz type algorithm for
computing Wk+1

i from Wk
i (where k de�nes the iteration of the Schwarz algorithm) writes

as

Ax
@Wk+1

i

@x
+ Ay

@Wk+1
i

@y
+ BWk+1

i = G in (li; Li)×R

C+i (W
k+1
i ) = C+i (W

k
i+1) at x=Li

C−
i (W

k+1
i ) = C−

i (W
k
i−1) at x= li

(4)

where the matrices C±
i have to be chosen so that the subproblems are well posed and the

algorithm has a fast convergence rate. Natural (also quali�ed as classical) interface conditions
resulting from the variational formulation of the initial and boundary value problem associated
to system (1) are given by

C+i =A
+
x =Tx�

−
x T

−1
x and C−

i =A
+
x =Tx�

+
x T

−1
x (5)

where, in the present case, Ax ≡Axnx+Ayny since n=(nx; ny)= (1; 0) (as usual, n is the unitary
external normal vector to the subdomain interfaces).

2.3. Convergence study of the Schwarz algorithm

In the following we proceed to the evaluation of the convergence rate of the Schwarz algo-
rithm by means of a Smith factorization approach (see Reference [5]). This study is motivated
by the need of a better understanding of the impact of the classical transmission conditions
(5) on the convergence of the Schwarz algorithm (4). The result will con�rm the one ob-
tained by the eigenvectors approach that can be found in Reference [3]. The choice of Smith
factorization as the mathematical tool for the convergence analysis is motivated by the fact
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that it yields a formulation which is intrinsic to the problem to be solved. In a second step,
new interface conditions will be derived by generalizing the Smith form of the classical
ones.

2.3.1. Smith factorization. The main result of the Smith factorization theory of polynomial
matrices is recalled below.

De�nition 1
Let A(�) be a m×m matrix with polynomials entries. There exist three matrices E(�), D(�)
and F(�) with polynomial entries (where E−1(�) and F−1(�) have polynomial entries) where
det(E(�))=det(F(�))=1 and D is diagonal, such that

A(�)=E(�)D(�)F(�)

D(�) represents the Smith diagonal form of A(�); E(�) (respectively, F(�)) is a permutation
matrix that operates on the lines (respectively, the columns) of A(�). The entries of D(�) are
given by Dj(�)=�j(�)=�j−1(�) where �j(�) is the GCD of the determinants of all the j× j
submatrices of A(�).

The �rst step consists in applying a Laplace transform in the x direction (the Laplace
variable is denoted by �) and a Fourier transform in the y direction (the Fourier variable is
denoted by �) to system (3). The transformed system writes A(�; �)Ŵ = f̂. The expression
of the transformed matrix A(�; �) is given in Dolean [6]. A(�; �) being a polynomial matrix,
it can be reduced to Smith form. In the present case, one obtains

D(�; �)=




1 0 0 0

0 1 0 0

0 0 G(�; �) 0

0 0 0 G(�; �)L(�; �)


 (6)

where

L(�; �) =−(c2 − u2)�2 + 2u(�+ i�v)�+ c2�2 + (�+ i�v)2

G(�; �) = �u+ (�+ i�v)
(7)

are the symbols of, respectively, a second-order elliptic operator and a transport operator.

2.4. Smith form of the Schwarz algorithm

Let W =(w1; w2; w3; w4)T denote the vector of conservative variables and �Wi :=F(@x; �) �Wi(x; �)
the corresponding vector of Smith variables. The error vector (denoted here by �W ) of the
Schwarz algorithm satis�es

D(�; �)( �W k+1
i ) = 0

C+i (F
−1 �W k+1

i ) =C+i (F
−1 �W k

i+1) at x=Li

C−
i (F

−1 �W k+1
i ) =C−

i (F
−1 �W k

i−1) at x= li

(8)
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Because of the structure of the matrix D, it is su	cient to work with two Smith variables
since we have �W k+1

i;12 ≡ 0, ∀k¿ 0. If we use the two subdomain case for the sake of the
analysis and the hypothesis of a subsonic �ow (the only case of interest for the convergence
analysis of the Schwarz algorithm, see Reference [3] for more details), we have �W k

1;3≡ 0 and
the algorithm can be written as

�1 : {b11( �W1;4)k+1 = b11( �W2;4)k + b12( �W2;3)k

�2 :



b21( �W2;4)k+1 + b22( �W2;3)k+1 = b21( �W1;4)k

b31( �W2;4)k+1 + b32( �W2;3)k+1 = b31( �W1;4)k

b41( �W2;4)k+1 + b42( �W2;3)k+1 = b41( �W1;4)k

(9)

On the other hand, the local solutions are explicitly given by

�W1;4 = �1e�L1 x; �W2;4 = �2e�Gx + �3e�L2 x; �W2;3 = �4e�Gx (10)

where �G and �L1;2 are the eigenvalues of the Fourier symbols �G and �L1; 2 that factorize
the operators G and L, i.e. G= @x − �G and L=(@x − �L1)(@x − �L2).
At that point, we can rewrite the interface iterations in terms of �i, i=1; 4 and we get the

expression of the convergence rate [6]

�(�;Mn; Mt)=
∣∣∣∣ R(�)− a(R(�) + a)2

R(�)(1− 3Mn)− a(1 +Mn)
1 +Mn

∣∣∣∣ (11)

where R(�) =
√
a2 + �2(1−M 2

n ), a=1=c�t+i�Mt (Mn and Mt , respectively denote the Mach
number normal and tangential to the interface with M =

√
M 2
n +M 2

t , where M is the global
Mach number) and c is the sound speed. We note that we get the same result as in the case
of the eigenvectors approach [3].

3. GENERALIZED INTERFACE CONDITIONS

In the following, we derive new interface conditions by generalizing the Smith form of the
Schwarz algorithm based on the classical interface conditions. Using the relation ( �W2;3)k+1 =
b21=b22(( �W1;4)k − ( �W2;4)k+1) we can rewrite the interface iterations (9) as

�1 : {b11b22( �W1;4)k+1 = (b11b22 − b21b12)( �W2;4)k + b21b12( �W1;4)k−1

�2 :

{
(b31b22 − b21b32)( �W2;4)k+1 = (b32b22 − b21b32)( �W1;4)k

(b41b22 − b21b42)( �W2;4)k+1 = (b41b22 − b21b42)( �W1;4)k
(12)
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In order to obtain a general form of the iterations we introduce the operators Bi=pi(�)@2x+
qi�@x + ri�; i=1; 4 and we consider the following form of the Schwarz algorithm:

�1 :

{
L(W k+1

1 )=0 for x¡0

B1(W k+1
1 )= (B1 +B2)(W k

4 )−B2(W k−1
1 ) for x=0

�2 :

{
L(W k+1

4 )=0 for x¿0

B3;4(W k+1
2 )= (B3;4(W k

1 ) for x=0

(13)

where pi(�), qi(�), ri(�) are polynomials in i�.
From our point of view, the above two level iteration applied to the third-order partial dif-

ferential equation G(@x; @y)L(@x; @y) is a key ingredient in the good behaviour of the Schwarz
algorithm based on the classical interface conditions. Then, our strategy consists in several
steps (see Dolean [6] for more details). First, we derive a new form of the interface conditions
in Smith variables by generalizing the expressions of pi(�), qi(�), ri(�). Then, we recover the
physical interface conditions by requiring that they are easy to implement. While doing so,
we have to check that the local problems are well posed and then estimate the convergence
rate which depends on a few parameters. Finally, we can optimize the convergence rate with
respect to these parameters

min
�

max
�∈[0;�max]

�(�; �;Mn; Mt) with

�(�; �;Mn; Mt)=
∣∣∣∣R(�)− aR(�) + a

R(�)(1− 2Mn − �Mn)− a(1 +Mn)
(1 +Mn)(R(�)�+ a)

∣∣∣∣
(14)

As a result of the optimization problem we obtain new conditions that lead to well-posed
local problems for which the convergence rate (�(�)) becomes null at two wavenumbers
(instead of only one at �=0 for the Schwarz algorithm based on the classical interface
conditions).

4. NUMERICAL RESULTS

4.1. Space and time discretization methods

The spatial discretization method adopted here combines the following elements (see Dolean
and Lanteri [7] for more details): (1) a �nite volume formulation on triangular meshes to-
gether with upwind schemes for the discretization of the convective �uxes; (2) an extension
to second-order accuracy that relies on the monotonic upstream schemes for conservation laws
(MUSCL) to unstructured triangular meshes by Fezoui and Stou
et [4]. Time integration of
the resulting semi-discrete equations is obtained using a linearized backward Euler implicit
scheme [4]. As a result, each pseudo-time-step requires the solution of a sparse linear sys-
tem for the �ow variables. In this study, a non-overlapping domain decomposition algorithm
implemented on a parallel architecture of Pentium Pro is used for advancing the solution at
each implicit time step.
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Table I. Non-overlapping additive Schwarz type algorithm. Classical interface conditions
versus generalized interface conditions.

Mn OPT0 OPT1 M∞ OPT0 OPT1

0.1 and Mt = 0:0 20 20 0.3 and Mt = 0:0 24 19
0.6 and Mt = 0:0 27 17 0.1 and Mt = 0:1 24 21
0.3 and Mt = 0:2 24 28 0.6 and Mt = 0:4 32 18
0.6 and Mt = 0:7 25 21 0.8 and Mt = 0:5 42 21

Figure 1. Structured triangular mesh of a rectangular domain.

4.2. Numerical results

We present here a set of preliminary results of numerical experiments that are concerned with
the evaluation of the in�uence of the interface conditions on the convergence of the non-
overlapping additive Schwarz type algorithm of form (4). The computational domain is given
by the rectangle [0; 2]× [0; 1]. The numerical investigation is limited to the resolution of the
linear system resulting from the �rst implicit time step using a Courant number CFL=100. A
slipping condition (V:n=0) is applied on the lower (y=0) and upper (y=1) walls; an in�ow
(respectively, out�ow) condition is applied on the left x=0 (respectively, right x=10) bound-
ary. Table I summarizes the number of Schwarz iterations required to reduce the initial linear
residual by a factor 10−10 for di�erent values of the reference Mach number. The underlying
triangular mesh is a regular one deduced from a �nite di�erence grid containing 4000 nodes
(200× 20) (see Figure 1). In this table, OPT0 stands for the classical interface conditions
while OPT1 corresponds to the algorithm based on the generalized interface conditions.

4.3. Conclusions

In this work we were interested in the acceleration of the convergence of a non-overlapping
additive Schwarz type algorithm by modifying the transmission conditions applied to the
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subdomain interfaces. We built generalized zero order interface conditions using Smith theory
of diagonalizing polynomial matrices. The numerical experiments con�rmed at least qualita-
tively the behaviour in accordance with the theory even if from the discrete point of view we
could not reproduce identically the results obtained in the continuous case. The preliminary
results are very encouraging as they lead to a very good convergence rate for certain Mach
numbers.
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